An iterative Lagrange method for the regularization of discrete ill-posed inverse problems
نویسندگان
چکیده
منابع مشابه
An iterative multigrid regularization method for Toeplitz discrete ill-posed problems
Iterative regularization multigrid methods have been successful applied to signal/image deblurring problems. When zero-Dirichlet boundary conditions are imposed the deblurring has a Toeplitz structure and it is potentially full. A crucial task of a multilevel strategy is to preserve the Toeplitz structure at the coarse levels which can be exploited to obtain fast computations. The smoother has ...
متن کاملLearning, Regularization and Ill-Posed Inverse Problems
Many works have shown that strong connections relate learning from examples to regularization techniques for ill-posed inverse problems. Nevertheless by now there was no formal evidence neither that learning from examples could be seen as an inverse problem nor that theoretical results in learning theory could be independently derived using tools from regularization theory. In this paper we pro...
متن کاملIll-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملLagrangian methods for the regularization of discrete ill-posed problems
In many science and engineering applications, the discretization of linear illposed problems gives rise to large ill-conditioned linear systems with right-hand side degraded by noise. The solution of such linear systems requires the solution of a minimization problem with one quadratic constraint depending on an estimate of the variance of the noise. This strategy is known as regularization. In...
متن کاملGlobal Saturation of Regularization Methods for Inverse Ill-Posed Problems
In this article the concept of saturation of an arbitrary regularization method is formalized based upon the original idea of saturation for spectral regularization methods introduced by Neubauer [5]. Necessary and sufficient conditions for a regularization method to have global saturation are provided. It is shown that for a method to have global saturation the total error must be optimal in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2010
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2010.07.003